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Abstract
The mechanism for entanglement of two flux qubits each interacting with a single mode
electromagnetic field is discussed. By performing a Bell state measurement (BSM) on photons
we find the two qubits in an entangled state depending on the system parameters. We discuss
the results for two initial states and take into consideration the influence of decoherence.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is one of the most fundamental features of
quantum mechanics. Besides its fascinating conceptual aspect
it also plays an important role in quantum information science
because entanglement of qubits is the essential requirement for
quantum computing. Various systems have been considered
as qubits [1, 2]; among them the solid state ones seem to be
very promising. In particular the superconducting flux qubit
has been developed in a superconducting ring with a Josephson
junction [3, 4]. The junction playing the role of the tunneling
barrier can be replaced by a superconducting quantum wire
which allows for quantum phase slip [5]. Recently a flux qubit
based on a semiconducting quantum ring with a controllable
barrier has been proposed [6]. In this context the problem of
the entanglement of two (or more) solid state qubits is of great
importance. It has been investigated for superconducting flux
qubits interacting via the mutual inductance, via a connecting
loop with a Josephson Junction and via an LC circuit [4, 7–9].
It was found [7] that entangled states do not decohere faster
than the uncoupled states. This is remarkable considering the
expectation that spatially extended entangled states could be
very susceptible to decoherence.

In this paper we want to study the entanglement of distant
flux qubits by swapping. The model considerations presented
may be applied both to superconducting or semiconducting
flux qubits. We investigate two independently evolving
subsystems each composed of a qubit exposed to a single mode

Figure 1. Entanglement swapping scheme.

of quantized electromagnetic field (figure 1). Contrary to the
previous studies, where the so called external approximation
was used [10], in this paper we take into account the full qubit–
field interaction.

Entanglement swapping was originally proposed for
photons [11] and has been investigated both theoretically and
experimentally [12, 13]. Recently this idea has been used
to demonstrate the entanglement of two single atom quantum
bits each spontaneously emitting a photon [14]. In our paper
we use this idea to entangle solid state qubits which seem
to be the most scalable and integrable [15]. The process of
entanglement can be described in this case by the interaction
Hamiltonian with controllable parameters. The use of solid
state qubits instead of the atomic qubits described in [14]
allows the building of systems operating at microwave rather
than optical frequencies.

The scheme of entanglement swapping for the discussed
system is presented in figure 1. Each qubit Q interacts with an
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electromagnetic field mode R leading to an entangled qubit–
field (Q R) state. This effect has been observed in a series of
experiments [16]. The two (Q R)i (i = 1, 2) systems do not
interact with each other and therefore the state of the whole
system is a product state. If one then performs the Bell state
measurement (BSM) on R1 and R2, the partner subsystems
Q1 and Q2 will collapse to an entangled state although they
have never physically interacted. To enhance the qubit–field
interaction the qubits can be placed into the quantum cavity.
The photons can escape from the cavity e.g. through a less
reflecting mirror [15, 17]. To quantify the entanglement we
calculate the negativity, and discuss the results for two different
initial states.

In sections 2–4 we investigate the behavior over short
timescales where the decoherence effects are negligible; the
influence of decoherence is studied in section 5.

2. The qubit–cavity system

To show the idea we consider the rf-SQUID qubit [4] in the
presence of static magnetic flux φcl. The Hamiltonian HQ of
such qubit can be written in a pseudo-spin notation

HQ = − 1
2 Bzσz − 1

2 Bxσx . (1)

We operate at T � Bx/kB in order to neglect thermal
fluctuations. The diagonal term Bz in (1) has the form

Bz = 2Ic

√
6(βL − 1)

(
φ0

2
− φ

)
(2)

where βL = 2πL(Ic/φ0) > 1, φ = φcl, Ic is the Josephson
junction critical current, Bx is the tunneling energy between the
two potential wells. Close to φ = 1

2φ0 (φ0 = h/2e) the ring is
well described by the quantum superpositions of two opposite
persistent current states.

At first we describe the process of entanglement of a qubit
Q1(Q2) with a single electromagnetic field mode R1(R2). We
model the electromagnetic field of the resonant cavity as an LC
resonator described by HR

HR = h̄ωR
(
a†a + 1

2

)
. (3)

When the qubit is exposed to the quantized electromagnetic
field the total flux φ = φcl + φq, contains the quantum part

φq =
√

h̄

2ωRCR

(
a + a+)

(4)

which leads to the qubit–field coupling. After some algebra we
obtain

HQ R = h̄ωQ

2
σz + h̄ωR

(
a†a + 1

2

)

− h̄ g̃
(
a + a†

)
(σz cos θ − σx sin θ) (5)

where ωQ is the qubit frequency

h̄ωQ

2
= 1

2

√(
Bcl

z

)2 + B2
x , (6)

the ‘mixing angle’ θ [18] is

θ = tan−1 Bx

Bcl
z

, (7)

and the coupling constant g̃ takes the form

g̃ = Ic

√
3 (βL − 1)

h̄ωRCR
. (8)

The above considerations can be equally well performed
for a semiconducting flux qubit [6] with

Bz = 2I0

(
φ0

2
− φcl

)
, (9)

where I0 is the amplitude of persistent current, φ0 = h/e, Bx

describes the tunneling amplitude of an electron via a potential
barrier.

Assuming realistic values of the parameters for supercon-
ducting qubit e.g. ωR = 2π · 50 GHz, Ic = 0.5 μA, we get
g̃ = 0.2ωR .

To discuss the qubit–field entanglement we assume that
the coherent coupling overwhelms the dissipative processes
(strong coupling regime). For creation and manipulation
of entangled states, it is thus essential that both the cavity
decoherence time TR and the qubit decoherence time TQ are
much longer than the qubit–cavity interaction time T� ∼
π/g̃ ∼ 10−11 s. Recently a high quality cavities (quality
factor Qf ∼ 105–108) have been built [17, 18]. They have
a photon storage time TR in the range 0.3–300 μs. The
estimated decoherence times TQ of the considered qubits are
of the order of a few microseconds (to be specific we assume
TQ ∼ 1 μs [4]). In the next two sections we investigate
the system at t � TQ, TR allowing the entanglement to be
obtained before the relaxation processes set in.

3. Entanglement swapping

The (Q R)i , i = 1, 2 system is described by a state vector
|ψQ R(t)〉i , which at t = 0 is a direct product of the qubit and
the cavity states:

ρ(Q R)i (0) = |ψQ R(0)〉ii 〈ψQ R(0)|,
|ψQ R(0)〉i = |σn〉i = |σ 〉i ⊗ |n〉i ,

(10)

where σ represents the qubit pseudo-spin states (g-ground, e-
excited), |n〉 are the photon number eigenstates, forming the so
called Fock basis, n = 0, 1, 2, . . ..

The interaction of the qubit with the field leads, in general,
to the entangled state

|ψQ R (t)〉i = e− i
h̄ HQRt |ψQ R (0)〉i . (11)

As the two qubit-boson subsystems do not interact with each
other their time evolved state remains separable:

ρ (t) = ρ(Q R)1(t)⊗ ρ(Q R)2(t). (12)

2



J. Phys.: Condens. Matter 20 (2008) 275219 E Zipper et al

Figure 2. The qubit–field negativity for different values of g̃,
θ = π/2, initial state |e0〉 and ωQ = ωR = 2π · 50 GHz.

The time evolution of this composite is a product of two unitary
evolutions of its constituents generated by the Hamiltonian (5)
where

|ψQ R(t)〉1 =
∑

n

[an(t)|gn〉1 + bn(t)|en〉1] (13)

|ψQ R(t)〉2 =
∑

n

[ãn(t)|gn〉2 + b̃n(t)|en〉2]. (14)

The BSM is performed on electromagnetic field modes in the
Fock basis (one photon with the vacuum) [12] and projects the
formerly independent qubits onto an entangled state

ρQQ(t) = T rR
(|B1

R〉〈B1
R |ρ(t)) , (15)

where

|B1
R〉 = 1√

2
(|01〉 − |10〉) (16)

is one of the Bell states of the electromagnetic field modes, the
trace T rR is taken with respect to photonic degrees of freedom.

After the BSM, the final qubit–qubit (QQ) state is of the
form

|ψQQ〉 = [a0(t)ã1(t)− a1(t)ã0(t)]|gg〉
+ [a0(t)b̃1(t)− a1(t)b̃0(t)]|ge〉
+ [b0(t)ã1(t)− b1(t)ã0(t)]|eg〉
+ [b0(t)b̃1(t)− b1(t)b̃0(t)]|ee〉. (17)

We quantify the entanglement by the negativity [19]
N(ρ) = max(0,−∑

i λi ), where λi are negative eigenvalues
of the partially transposed [20] density matrix of the two qubits.
For an entangled state, the negativity is positive reaching
its maximal value N = 0.5 for maximally entangled pure
state. It vanishes for disentangled states. Moreover, as it
is an entanglement monotone it can be used to quantify the
degree of entanglement. The use of negativity, instead of
some entropic criteria as e.g. linear entropy, allows for the
simultaneous treatment of the entanglement of pure and mixed
states. Let us notice that in general (e.g. beyond the Jaynes–
Cummings approximation) the qubit–resonator system evolves
in an infinite-dimensional Hilbert space. It is known [21]

Figure 3. The qubit–field negativity for different values of θ ,
g̃ = 0.2, initial state |e0〉, ωQ = ωR = 2π · 50 GHz.

that in high-dimensional systems the so-called PPT (positive
with respect to partial transposition) entangled states can occur.
They cannot be detected by the Peres criterion and negativity.
In this paper we limit our attention to the N PT entangled
states i.e those which are negative with respect to partial
transposition.

4. Numerical results

We present results for entanglement of both qubit–field (Ni )
and qubit–qubit (NQQ ) systems. As the calculations are
numerical we are not limited to the weak coupling regime. In
numerical calculations the Hilbert space of microwave modes
is truncated at nmax = 10. We test the validity of the truncation
by controlling the traces of the matrices [22] to remain larger
than 0.99.

There are many parameters affecting entanglement of
qubits. To show the idea we restrict our considerations to
selected examples and discuss the results for two initial states.
In our model calculation we assume that both qubits are
identical, the analysis can easily be extended further. In this
paper we consider only the resonant case i.e. ωRi = ωQi ≡
ωR = 2π · 50 GHz. The values of g̃i are in the units of ωR .

At first we assume the initial state to be

|ψQ R(0)〉1 ⊗ |ψQ R(0)〉2 = |e0〉1 ⊗ |g1〉2. (18)

In figure 2 we show how the qubit–field negativity depends on
the coupling strength g̃ and in figure 3 we show its behavior for
different values of the mixing angle θ . Comparing these figures
we see that both θ and g̃ influence the effective qubit–field
interaction strength. The increase of g̃ causes an increase of the
Rabi oscillation frequency and the entanglement arises faster
than for weaker coupling. Similarly, bringing θ closer to π/2
increases the Rabi frequency. For θ = 0 the Q R entanglement
disappears. In the following we assume θ = π/2, which gives
the strongest effective coupling with fixed g̃. In the upper
panel of figure 4 the oscillating qubit–field negativities N1 and
N2 reflect the varying degree of entanglement as a function of
time. The differences in these two curves arise from different

3
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Figure 4. Negativities N1 (crosses), N2 (dashed line), NQQ (solid
line) and probabilities for finding the two qubits in different states
after the BSM. The initial state |e0〉1 ⊗ |g1〉2, coupling strength
g̃i = 0.2, θi = π/2.

initial states for (Q R)i systems (|e0〉1 ⊗ |g1〉2). If we perform
the BSM at a certain time t we obtain an entanglement of
qubits (solid line) conditioned by the degree of entanglement
of (Q R)i . In particular if we do the BSM in the time window in
which the (Q R)i subsystems are almost maximally entangled
we obtain the maximally entangled qubits with NQQ ∼ 0.5.
On the other hand if we perform the BSM in the time window
where the (Q R)i subsystems are weakly entangled the QQ
entanglement is vanishingly small.

We emphasize that the ‘time’ in the figures is either the
physical time of the quantum evolution of the Q R system
or the time, called the ‘BSM time’, at which the BSM was
performed.

The bottom parts of figures 4 and 5 show the probabilities
of finding the qubits in |ee〉, |eg〉, |ge〉 and |gg〉 states
(e.g. Peg = |〈eg|ψQQ(t)〉|2). We see that the final state belongs
to the subspace spanned by |eg〉 and |ge〉. This is because
of the value of θi = π/2 and the chosen projection operator.
For such a θ the interaction term in (5) reduces to the form
g̃(a† + a)σx that excites only |en〉 with n even and |gm〉 with
m odd if we start from |e0〉 and |g1〉 initial states respectively.
Then when the BSM is done the only nonzero elements, in
equation (17), are b1ã0 and a1b̃0. The relationship between the
‘occupation probabilities’ can be directly translated into the
entanglement of the state: the more one of the probabilities
dominates the other the less entangled is the state and when the
probabilities Peg and Pge equal 0.5 the entanglement reaches
its maximal value.

The decay rate of the Q R system can be estimated as [18]

1

TQ R
= 1

2

(
1

TQ
+ 1

TR

)
. (19)

Assuming a cavity with Qf = 105 we find TR ∼ 0.3 μs and
TQ R ∼ 0.5 μs. For a cavity with Qf = 106 we get TR ∼ 3 μs
and TQ R ∼ 1.5μs. The decoherence time of the QQ entangled
state is accordingly TQQ ∼ TQ ∼ 1 μs. This estimation is

Figure 5. N1 (crosses), N2 (dashed line) and NQQ (solid line)
negativities (top) and probabilities (bottom) for the initial state (20),
θi = π/2 and small detuning g̃1 = 0.2, g̃2 = 0.202.

in agreement with the experimental findings [7] that entangled
states do not decohere faster than uncoupled systems.

For the initial state

|ψQ R(0)〉1 ⊗ |ψQ R(0)〉2 = |e0〉1 ⊗ |e0〉2 (20)

the situation looks different. The identity of the systems (the
same parameters and initial states) leads to striking results.
Whenever we perform the BSM we almost always (with some
exceptions) obtain the maximally entangled qubit–qubit state.
In order to show some subtleties we take the systems slightly
detuned with g̃1 = 0.2, g̃2 = 0.202 and treat g̃1 = g̃2 = 0.2
as a limiting case. Because the two Q R systems are almost
identical, differing minutely in Rabi frequencies, they evolve
to almost the same quantum states and even if the Q R’s are not
strongly entangled the BSM gives nearly the same probabilities
Peg = Pge ∼ 0.5. In consequence, we get an almost maximally
entangled QQ state for arbitrary BSM time, except for some
moments (in figure 5 for ωRt ∼ 16) at which the norm of the
BSM output approaches zero and the above quantities become
undefined. If the BSM were performed at these moments the
entanglement would be unsuccessful. In the case g̃1 = g̃2 the
probabilities are always the same and the qubits get maximally
entangled for each BSM time (see B line in figure 7) with the
exceptions described above. Similar results we have obtained
for the initial state |g1〉1 ⊗ |g1〉2.

5. Decoherence

The design and construction of quantum devices is always
limited by the influence of environment. Here, instead of a
rigorous treatment, developed e.g. for pure dephasing [23, 24],
we apply the commonly used Markovian approximation [25]
and model the reduced dynamics of the Q R system in terms of
master equation generating complete positive dynamics [26].
Following [18] we assume that the effect of environment can
be included in terms of two independent Lindblad terms:

ρ̇(t) = [L H − 1
2 L1 − 1

2 L2]ρ(t) (21)

4
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Figure 6. The QQ negativity with (A) and without (B) decoherence
for the initial state (18). The parameters are θi = π/2, g̃i = 0.2,
TRi = 0.3 μs, TQi = 1 μs.

Figure 7. The QQ negativity with (A) and without (B) decoherence
for the initial state (20). The parameters are as in figure 6.

where the ‘conservative part’ is given by

L H (·) = −i[HQ, ·] (22)

whereas the ‘Lindblad dissipators’

Lk(·) = A†
k Ak(·)+(·)A†

k Ak −2Ak(·)A†
k, k = 1, 2 (23)

are expressed in terms of creation and annihilation operators
‘weighted’ by suitable lifetimes A1 = a/

√
TR and A2 =

σ−/
√

TQ . To be precise we assume TQ ∼ 1 μs, TR ∼
0.3 μs. As the dynamics becomes non-unitary the system
evolves, in general, to the mixed state. The BSM applied to the
density operator of the mixed states is well defined physical
operation of projection and reduction which can be shown to
be completely positive (see appendix) and thus applicable to
arbitrary ρ. In figure 6 we show the results of the master
equation simulations of the negativity (the line labeled by A
in figure 6) in comparison with the calculations which neglect
decoherence (the line labeled by B) for the initial state (18).
The periodicity with the decoherence included is conserved.

Figure 8. The amplitude of the qubit–qubit negativity plotted as a
function of BSM time for two different initial states. The parameters
are as in figure 6.

For better visibility we only present the results in a short
time period. We see that decoherence slightly decreases the
amplitude of the oscillations.

The influence of decoherence on the entanglement of the
system starting from (20) (figure 7) is much more dramatic. In
contrast to the non-dissipative case (B) the result of the BSM
depends strongly on the BSM time and the character of the
entanglement becomes quasi-periodic. In figure 8 we show
the decrease of the amplitude of negativity as a function of
time over a the larger timescale for both initial conditions. The
decrease is faster for the initial state (18) in comparison with
that for the initial state (20).

6. Conclusions

We investigated a mechanism for the creation of the
entanglement of two qubits, each interacting with a single
mode electromagnetic field coming from independent sources.
This interaction leads to two independent entangled qubit–field
states, and BSM performed on the electromagnetic field modes
projects the qubits onto an entangled state. Thus we discussed
the transfer of quantum information between systems having
a different physical nature and defined in Hilbert spaces of
different dimensions.

In the first part of the paper we have dealt with pure
states which is justified to some extent by their estimated
relatively long decoherence times. The systems discussed offer
the advantage of reaching a strong coupling regime between
light and matter. We have checked that the Jaynes–Cummings
model, valid for weaker Q R coupling [27], gives results in
agreement with our calculations for g � 0.03ωR . Assuming
reasonable values for the parameters we found that the strong
coupling regime (T −1

� 	 T −1
R , T −1

Q ) can be realized and
coherent manipulation of qubits (especially with the quantum
error correction technique) and maximally entangled qubit–
qubit states is possible.

Analyzing the dynamics of the system in the presence
of decoherence we found that the observation of coherent

5
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phenomena and in particular the generation of highly entangled
states is still possible.

It seems that entanglement of distant qubits by swapping
can have some advantages over standard schemes of setting up
entanglement that rely on generating entangled subsystems at
a point and supplying them to distant areas. The qubits emerge
entangled despite the fact that they have never interacted in
the past and therefore they do not influence each other by
disturbing the single qubit features. They can be at much
larger distances as the scheme does not depend essentially
on the distance between them. The degree of entanglement
depends on the moment at which the BSM was performed.
Verifying experimentally that two qubits are unambiguously
entangled is a difficult task requiring sophisticated methods
such as e.g. quantum state tomography [28]. The solid state
qubits and their entanglement discussed in this paper can be
scaled to a larger set of quantum bits [29]. It can be of interest
in the study of the fundamental laws of quantum mechanics and
can be useful in quantum information processing and quantum
communication. It seems that the experimental realization of
the presented model features may be performed with currently
available technologies. Following [21], we hope that, sooner
or later, ‘what is predicted by quantum formalism must occur
in the laboratory’.
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Appendix

We will prove that the transformation described by (15)
and (16) which was defined for pure states, also makes sense
for an arbitrary mixed state of the two-qubit–field (Q RQ R)
system, i.e. it is described by a completely positive operator
transforming an arbitrary density matrix of the full system into
a density matrix of the two-qubit (QQ) system. Although it is
easy to understand on a purely physical basis (transformation
consists of a measurement and a reduction to a subsystem), it
is instructive to give an explicit proof of the statement. As
a bonus we will easily find an explicit Kraus form of the
transformation in question.

Let
ρ =

∑

μkνl
ςmτn

ρμkνl
ςmτn |μkνl〉〈ςmτn|, (24)

where, cf (10),

|μkνl〉 = |μ〉1 ⊗ |k〉1 ⊗ |ν〉2 ⊗ |l〉2 = |ψQ R〉1 ⊗ |ψQ R〉2 (25)

for μ, ν ∈ {g, e}, k, l ∈ {0, 1, . . .} form a basis of pure states
for the full system.

For the moment let us consider only the Jaynes–
Cummings approximation where we take into account only

the modes |0〉 and |1〉 of the electromagnetic field, hence all
Latin indices in (24) and (25) take the values 0, 1 only. In
this case density matrices of the Q RQ R system act in the
16-dimensional complex space, H1 = C16, and as such form
a subset of the 16 × 16-dimensional complex linear space.
Analogously, density matrices of the QQ system, acting in
the 4-dimensional complex space, H2 = C4, form a subset
of the 4 × 4-complex space. The transformation (denoted
in the following by �) described by (15) regarded on the
whole 256-dimensional complex space transforms it into the
16-dimensional one. Straightforward calculations give

�(ρ) =: σ =
∑

μ, ν ∈ {g, e}
ς, τ ∈ {g, e}

σμνςτ |μν〉〈ςτ |, (26)

σμνςτ = 1
2

(
ρ
μ0ν1
ς0τ1 − ρ

μ1ν0
ς0τ1 − ρ

μ0ν1
ς1τ0 + ρ

μ1ν0
ς1τ0

)
, (27)

where |μν〉 := |μ〉1 ⊗ |ν〉2 form a basis of pure states of the
QQ system. In the following we will need only

�
(|μkνl〉〈ςmτn|) = 1

2

(
δ0kδ1lδ0mδ1n − δ1kδ0lδ0mδ1n

− δ0kδ1lδ1mδ0n + δ1kδ0lδ1mδ0n
)|μν〉〈ςτ |. (28)

To check the complete positivity of � we use the Choi–
Jamiolkowski isomorphism defined as [30]

J (�) = (�⊗ I1)(P+), (29)

where I1 is the identity operator on the 256-dimensional space
and P+ is a maximally entangled state on the H1 ⊗ H1 space

P+ = |�+〉〈�+|, |�+〉 =
∑

μkνl

|μkνl〉 ⊗ |μkνl〉. (30)

According to the Choi theorem [31],� is completely positive if
and only if J (�) is a positive definite operator. Applying (29)
and (28) to (30) we get

J (�) = |�〉〈�|, (31)

where

|�〉 = 1√
2

∑

μν

|μν〉 ⊗ (|μ0ν1〉 − |μ1ν0〉). (32)

Hence J (�) is a projection and as such a positive definite
operator, consequently � is completely positive.

The obtained results allow us to write explicitly the so
called Kraus form of�,

�(ρ) =
∑

n

AnρA†
n, (33)

where An are dimH2 × dimH1 = 4 × 16 matrices. To this
end [32] we have to perform the spectral decomposition of the
positive definite operator J (�)

J (�) =
∑

μ

dn|χ ′
n〉〈χ ′

n |. (34)

Since dn are positive, we can rescale the eigenvectors

|χn〉 := √
dn|χ ′

n〉. (35)

6
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Now the operators An can be found in the form

An := (
I2 ⊗ 〈�+|)(|χn〉 ⊗ I1

)
, (36)

where I2 is the identity on H2. The above formula should be
properly understood. Observe that since |χn〉 is an element of
H2 ⊗ H1, it has the form |χn〉 = ∑

i |φn,i〉 ⊗ |ξn,i 〉, where
|φn,i〉 ∈ H2, |ξn,i〉 ∈ H1, whereas 〈�+| = ∑〈μkνl| ⊗ 〈μkνl|.
Hence

An = (
I2 ⊗ 〈�+|) (|χn〉 ⊗ I1)

=
(

I2 ⊗
∑

μkνl

〈μkνl| ⊗ 〈μkνl|
)(

∑

i

|φn,i〉 ⊗ |ξn,i〉 ⊗ I1

)

=
∑

i,μkνl

〈μkνl|ξn,i〉 |φn,i 〉〈μkνl|. (37)

In our case J (�) has only one non-vanishing eigenvalue
corresponding to the eigenvector |χ1〉 = |�〉 = ∑

μν |φ1,μν〉⊗
|ξ1,μν〉. Hence |φ1,μν〉 = |μν〉 and |ξ1,μν〉 = (|μ0ν1〉 −
|μ1ν0〉)/√2. Using (32) and (37) we finally obtain:

A = 1√
2

∑

μν

(|μν〉〈μ0ν1| − |μν〉〈μ1ν0|). (38)

A short calculation shows that indeed, cf (26),

�(ρ) = AρA†. (39)

The calculations do not change considerably if we go
beyond the Jaynes–Cummings approximation, by taking into
account arbitrary finite numbers of photons in each cavity. In
fact, in this case, the only difference consists of extending
all summations over the number of photons from the two
terms corresponding to 0 and 1 to the desired numbers of
cavity excitations which we would like to include. The
final results (38) and (39) remain unaltered. The situation
is more subtle if we want to take into account the infinite
number of possible photonic excitations of the cavity modes.
The corresponding cavity Hilbert space becomes now infinite-
dimensional and a straightforward generalization of the Choi–
Jamiołkowski isomorphism does not exist—one has to resort
to slightly more involved procedures to investigate directly the
complete positivity [33]. It is, however, not really needed in
our case. As is easy to check, the final result (38), (39) is also
correct in the infinite-dimensional setting.
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